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Abstract— A practical method for diminishing total transmission losses
in curved dielectric optical slab waveguides is proposed. Asymmetric struc-
tures are introduced into curved sections. It is found that there exists an
optimum asymmetric structure for the curved section which makes the total
transmission loss minimum. And it is also found that the characteristics of
total transmission loss do not critically depend upon the asymmetry of
waveguide structure, so that some displacement from the optimum struc-
ture does not increase the loss in an appreciable amount.

I. INTRODUCTION

ROPAGATING modes along a circular bend of di-
. electric waveguide suffer from a pure bending loss
which mainly depends upon waveguide structure and
curvature radius. In addition, a transition loss due to
transformed radiation modes is incurred as soon as a
propagating mode passes through a junction where two
waveguides of different curvature radii are connected. Up
to date, these two types of losses in several kinds of
dielectric waveguides have been analyzed in detail sep-
arately [1]-[5]. A few reports have treated a total transmis-
sion loss which must be evaluated by taking both kinds of
losses into consideration [6], [7].

Generally speaking, these losses must be decreased to the
smallest possible amount in the application of dielectric
waveguides to optical integrated circuits. Therefore, the
loss reduction is an important problem which must be
solved quickly from the practical point of view. To the
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authors’ knowledge, however, it seems that methods for
diminishing the total transmission loss have been scarcely
presented.

Taking account of the well-known fact that the char-
acteristics of each kind of loss are strongly affected by the
waveguide structure, we can expect the improvement in the
total transmission-loss characteristics provided that the
waveguide structure is controlled appropriately. In the
present paper, a practical method is proposed for diminish-
ing the total transmission loss of a step-index dielectric
optical slab waveguide containing a circular bend. An
asymmetric index distribution is introduced into a curved
section which connects two straight waveguides of symmet-
ric index distribution. Though a very simple and seasy
method, it has an excellent effect on the total transmission
loss as shown in the following sections.

The analysis is based on the assumption that the total
transmission loss is given by the sum of pure bending loss
and transition loss. This assumption may be good when the
curved section is not perturbed and long enough compared
with the wavelength of light. The pure bending loss is
calculated by using the convenient approximate method
presented by Marcuse [2]. The transition loss at the junc-
tion is estimated by the overlap integral of the wave
functions in both sections. The perturbation solution is
used for the wave function of curved section [8].

II. Pure BENDING Loss

A curved dielectric optical slab waveguide and a cylin-
drical coordinate system are shown in Fig. I. The center of
curvature coincides with the z axis of the coordinate sys-

0018-9480 /81 /1100-1182800.75 ©1981 IEEE



GESHIRO AND SAWA: METHOD FOR DIMINISHING TOTAL TRANSMISSION

(r,e,z)

z R-d R Red

Fig. 1. Curved dielectric slab waveguide and cylindrical coordinate sys-

tem.

tem. It is well known that the Bessel function with complex
order is the solution of Maxwell’s equations in the cylindri-
cal coordinate system. The boundary condition that the
tangential field components must be continuous at the
dielectric interfaces leads to the eigenvalue equation whose
solution is the complex propagation constant of the propa-
gating mode. The pure bending loss is obtained from the
imaginary part of it. The eigenvalue equation can be solved
numerically without much trouble by using an electronic
computer, if necessary.

On the other hand, several accurate approximate meth-
ods have been presented up to date [1]-[4], and they are
much easier than the above rigorous procedure in the
analysis of pure bending loss. In this paper, Marcuse’s
approximation will be used. The pure bending loss per unit
length 2« is expressed in the literature [2] as follows:

20k%exp[28d— U]

2= (1)
(nf—n%)k23(2d+%+%)
where
s |
U={sh ITS— —2}6R (2)
B
k2 =nik?— B2 (3)
v2=p>—n3k? (4)
* 62 =2 —n3k?. 5)

The propagation constant 8 must be the solution of an
eigenvalue equation

k(y+9)
K2—y8

tan 2kd= (6)
In the preceding equations, 24 is the slab thickness and R
is the curvature radius of waveguide center; n, n,, and n,
are the refractive indexes in the region r<R—d, R—d<r<
R+d, and R+d<r, respectively; and k is the wavenumber
in free space. These equations are valid for TE modes, so
that the following discussions will be restricted to those of
the TE mode.

Let us study the dependence of pure bending loss upon
the asymmetry in the waveguide structure. The numerical
results for the lowest order mode with the aid of (1) are
shown in Figs. 2 and 3, where the contribution of asymme-
try in the refractive-index distribution is illustrated. In
both figures, the ordinate is the normalized pure bending
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Fig. 2. Pure bending loss of the TE,; mode versus asymmetry index of
the waveguide structure with normalized curvature radius as a parame-
ter, where n,=1.01 and n,=1=n,. (a) V=n/4. (b) V=u/2.
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Fig. 3. Pure bending loss of the TE; mode versus asymmetry index of
the waveguide structure with normalized curvature radius as a parame-
ter, where n,=1.01 and n,=1=n;. (a) V=n/4. (b) V=n/2.
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loss per unit radian

1/2
B ni—n3 /
L,=aR (7)
n
and the abscissa is the asymmetry index
2_ 2
=t ®)
2_.,2
ni—n;

where
)]

means that 7, is equal to either n, or n; which is fixed in
each case. The parameters R and V are the normalized
radius of curvature

n=fix(n,,n;)

3,2
R (10)

2

_ l’lf
R=2nk 1———2
nj

and the normalized frequency

V:kd(nlz—nj%)l/2 (11)

respectively. In Fig. 2, it is assumed that refractive indexes
n; =101, n;/=n,;=1, and n, increascs from unity so that
the asymmetry index changes from zero to unity, whereas
in Fig. 3, n,=1.01, n~=n,=1, and n, decreases from unity
so that g changes from zero to unity. Therefore, the wave-
guide is assumed to be weakly guiding. The other parame-
ters have been chosen so that R=40,50,70,100 in every
figure, V=a/4 in (a), and V=o/2 in (b).

It is explicitly illustrated in Figs. 2 and 3 that the pure
bending loss decreases monotonically with the increase of
asymmetry index. The change of »n, contributes much more
efficiently than that of »,. This is the property inherent in
the pure bending loss.

II1.

When two waveguides of different curvature radius
and /or structure are connected to each other, the propa-
gating mode supported by one waveguide transforms to
every possible mode of the other waveguide at the junction.
The radiation loss due to the mode conversion is looked on
as the transition loss. In the present case of the single-mode
operation, the transition loss can be estimated in terms of
the power transmitted through the junction, because the
reflected power from it must be negligibly small under the
weakly guiding condition. The transmission coefficient of
the power through the junction can be easily obtained from
the following overlap integral:

_ {fEl(u)E2(u)du}2
JE\(u)* du- [E,(u) du

TRANSITION Loss

(12)

where E|(u) and E,(u) are the wave functions for the
lowest order mode of two connected waveguides.

With the aid of (12), let us estimate the transmission
coefficient in the case shown in Fig. 4 where a symmetric
straight slab waveguide is connected to an asymmetric
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Fig. 4. Junction between symmetric straight slab waveguide and asym-
metric curved slab waveguide, where n,>n, =n; in the straight sec-
tion, and n,>n, =n; in the curved section.

curved one. A perturbation solution

F(u
E(u) = Exfu) + L) (13
where
u=r—R (14)
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D

is used for the wave function of curved slab waveguide [8].
Figs. 5 and 6 show the variation of transmission coefficient
with the asymmetry index. In Fig. 5, it is assumed that
n,=1.01, n, =n,; =1 for the straight section, and n, =1.01,
ny =1, ny=1 for the curved section, whereas in Fig. 6, the
straight section is the same as that in Fig. 5 and n; =1.01,
n, =1, ny<1 for the curved section. The other parameters
have been chosen so that R=40, 50, 70, 100 in every figure,
V=u/41in (a), and V=w/2 in (b). The transmission coeffi-
cients obtained from (12) are in good agreement with those
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Fig. 5. Transmission coefficient of the TE, mode at the junction versus
asymmetry index of the waveguide structure in curved section with
normalized curvature radius as a parameter, where n, =1.01 and n, =
ny=1 in the straight section, and n;=1.01 and n,>1=n4 in the
curved section. (a) V=a/4. (b) V=m/2.
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Fig. 6. Transmission coefficient of the TE, mode at the junction versus
asymmetry index of the waveguide structure in curved section with
normalized curvature radius as a parameter, where ny=1.01 and n, =
n3=1 in the straight section, and #;=1.01 and #,=1>n; in the
curved section. (a) V=u/4. (b) V=mn/2.

of Taylor’s analysis [5] for the case that n)=1.01, n, =n,
=1 in both straight and curved sections and R>30.

From these figures, it is found that each curve certainly
takes the maximum value at a certain asymmetry index for
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Fig. 7. Curved slab waveguide of turning angle # connected to straight
slab waveguides at both ends, where n, >n, =n, in the straight sections
and n;>n, >n; in the curved section.

any curvature radius. The field distribution of curved sec-
tion shifts from that of straight section to the far side of
curvature center with decreasing curvature radius. On the
other hand, the field of dielectric waveguide has a tendency
to concentrate on the higher side of the refractive index
when the waveguide structure is asymmetric. At the maxi-
mum point of the transmission coefficient, it is considered
that the contribution of both of the above effects must just
offset each other. The smaller the curvature radius be-
comes, the larger asymmetry is required.

IV. TotAL TRANSMISSION Loss

In the present section, the total transmission loss is
estimated in the case that asymmetric curved slab wave-
guide of a certain curvature radius and arc length is
connected to a symmetric straight slab waveguide at both
ends as shown in Fig. 7. When each straight section
consists of the same waveguide, the transmission coeffi-
cient at the entrance to the curved section is identical to
that at the exit. Under the assumption that the total
transmission loss can be obtained from the sum of pure
bending loss and transition loss, the total transmission
coefficient T,,, of the power passing through the whole
curved section is expressed ds

T =T-exp[—2aR6]-T (18)
where @ is the turning angle of curved section. In the
following numerical examples, # has been chosen as 90° in
every case excepting Fig. 10.

Figs. 8 and 9 show the change of total transmission
coefficient with the asymmetry index. In Fig. 8, it is
assumed that n, =1.01, n,=n;=1 for both straight sec-
tions and n, =101, n,=1, n;=1 for the curved section,
whereas in Fig, 9, the straight sections are the same as
those in Fig. 8 and n, =101, n, =1, n;<1 for the curved
section. The other parameters have been chosen so that
R=40, 50, 70, 100 in every figure, V=u/4 in (a), and
V==/21in (b).

It is illustrated in these figures that there exists the
optimum asymmetry index which makes the total transmis-
sion coefficient maximum for any curvature radius as well
as in Figs. 5 and 6. However, the asymmetry index of the
maximum point is somewhat larger than that of the corre-
sponding example for the transition loss. The displacement
becomes larger with a decreasing curvature radius, because
the contribution of pure bending loss becomes more domi-
nant. It is one of the most practically important results
obtained here that a great improvement in the total trans-
mission coefficient can be achieved by introducing an
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Fig. 8. Total transmission coefficient of the TE, mode versus asymme-
try index of the waveguide structure in curved section with normalized
curvature radius as a parameter, where ny =1.01, and n, =n; =1 in the
straight section and n,=1.01, n,>1=n3, and §=90° in the curved
section. (a) V=m/4. (b) V=mu/2.
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Fig. 9. Total transmission coefficient of the TE; mode versus asymme-
try index of the waveguide structure in curved section with normalized
curvature radius as a parameter, where n, =1.01 and n, =n; =1 in the
straight section and n, =1.01, n, =1=n5, and #=90° in the curved
section. (a) V=u/4.(b) V=x/2.

na=1

adequate asymmetric structure into the curved section even
though the asymmetry index is not just the optimum value.

In the comparison between the results of Figs. 8 and 9, it
is apparent that the control of n, is more effective than
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Fig. 10. Total transmission coefficients of the TE, mode versus asym-
metry index of the waveguide structure in curved section with turning
angle in curved section as a parameter, where n; =1.01, and n, =n; =1
in the straight section, R=40, and V=7/4. (a) n, =101l and n, =1=n;,
in the curved section. (b) n;=1.01 and n,=1=n; 1n the curved
section.

that of n,. For a typical example, in the case of R=40 in
Fig. 8(a), the transmission coefficient is about 0.73 at the
maximum position. On the other hand, in Fig. 9(a) it is
about 0.95 at the maximum position and is above 0.9 in
such a wide range of asymmetry index as 0.4<<a<1. In the
practical application, however, there may be the case in
which it is very difficult to decrease the refractive index s,
or something equivalent in the corresponding region. In
such a case, a larger curvature radius is needed to ensure
the required total transmission coefficient.

Finally, the change of the total transmission coefficient
with the asymmetry index is illustrated in Fig. 10 with the
turning angle of the curved section as a parameter. It is
assumed that §=60°, 90°, 120°, V=m/4, R=40 in both
cases, n, =1.01, n,=1, n;=11in (a), and n, =101, n, =1,
ny =<1 in (b). It is an important feature that the optimum
asymmetry index scarcely changes for three arc lengths of
the curved section in both cases shown in the figure.

Much more complicated structures exist in the actual
waveguide with a three-dimensional guiding property for
optical integrated circuits such as rib waveguides, optical
strip waveguides, etc. However, asymmetric structures can
be easily introduced into these waveguides by means of
decreasing the film thickness of either side of the core in
the case of rib waveguides and loading another material on
either side of the loaded strip in the case of optical strip
waveguides. These waveguides can be transformed into the
equivalent slab waveguides by the concept of effective
index in good approximation, so that the asymmetry of
waveguide structure is included in the asymmetry of refrac-
tive index distribution in the equivalent slab waveguides.
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Therefore, the results on slab waveguides obtained here can
be directly applied to the actual waveguides for optical
integrated circuits.

V. CONCLUSIONS

The asymetric structure is introduced into the curved
section to minimize the total transmission loss involving
both the contribution of pure bending loss and transition
loss in a dielectric slab waveguide. The analysis is based on
the assumption that the total transmission loss is obtained
from the sum of the pure bending loss and the transition
loss.

As a result, it is shown that there exists an optimum
asymmetric structure of waveguide for the curved section
which makes the total transmission loss minimum when
both the curvature radius and the arc length are fixed, and
that the improvement of loss characteristics becomes pro-
nounced more and more with a decreasing curvature radius.
And it is also shown that the characteristics of the total
transmission loss do not critically depend upon the asym-
metry index of the waveguide structure, so that some
deviation of the asymmetry index from its optimum value
will not increase the loss in an appreciable amount. The
results on slab waveguides obtained here would be still
applicable to the actual waveguides for optical integrated
circuits such as rib waveguides or optical strip waveguides
without major modification.
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