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Dielectric Optical Waveguides

MASAHIRO GESHIRO, MEMBER, IEEE, AND SHINNOSUKE SAWA, MEMBER, IEEE

A bstract—A practical method for diminishing totaf transmission losses

in curved dielectric optical slab wavegnides is proposed. Asymmetric struc-

tures are introduced into curved sections. It is found that there exists an

optimum asymmetric structure for the curved section which makes the totaf

transmission loss minimum. And it is also found that the characteristics of

total transmission loss do not critically depend upon the asymmetry of

wavegnide structure, so that some dkplacement from the optimum stmc-

tnre does not increase the loss in an appreciable amount.

I. INTRODUCTION

,PROPAGATING modes along a circular bend of di-

electric waveguide suffer from a pure bending loss

which mainly depends upon waveguide structure and

curvature radius. In addition, a transition loss due to

transformed radiation modes is incurred as soon as a

propagating mode passes through a junction where two

waveguides of different curvature radii are connected. Up

to date, these two types of losses in several kinds of

dielectric waveguides have been analyzed in detail sep-

arately [1 ]–[5]. A few reports have treated a total transmis-

sion loss which must be evaluated by taking both kinds of

losses into consideration [6], [7].

Generally speaking, these losses must be decreased to the

smallest possible amount in the application of dielectric

waveguides to optical integrated circuits. Therefore, the

loss reduction is an important problem which must be

solved quickly from the practical point of view. To the
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authors’ knowledge, however, it seems that methods for

diminishing the total transmission loss have been scarcely

presented.

Taking account of the well-known fact that the char-

acteristics of each kind of loss are strongly affected by the

waveguide structure, we can expect the improvement in the

total transmission-loss characteristics provided that the

waveguide structure is controlled appropriately. In the

present paper, a practical method is proposed for diminish-

ing the total transmission loss of a step-index dielectric

optical slab waveguide containing a circular bend. An

asymmetric index distribution is introduced into a curved

section which connects two straight waveguides of symmet-

ric index distribution. Though a very simple and heasy

method, it has an excellent effect on the total transmission

loss as shown in the following sections.

The analysis is based on the assumption that the total

transmission loss is given by the sum of pure bending loss

and transition loss. This assumption may be good when the

curved section is not perturbed and long enough compared

with the wavelength of light. The pure bending loss is

calculated by using the convenient approximate method

presented by Marcuse [2]. The transition loss at the junc-

tion is estimated by the overlap integral of the wave

functions in both sections. The perturbation solution is

used for the wave function of curved section [8].

II. PURE BENDING Loss

A curved dielectric optical slab waveguide and a cylin-

drical coordinate system are shown in Fig. 1. The center of

cui-vature coincides with the z axis of the coordinate sys-
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Fig. 1, Curved dielectric slab waveguide and cylindrical coordinate sys-

tem.

tern. It is well known that the Bessel function with complex

order is the solution of Maxwell’s equations in the cylindri-

cal coordinate system. The boundary condition that the

tangential field components must be continuous at the

dielectric interfaces leads to the eigenvalue equation whose

solution is the complex propagation constant of the propa-

gating mode. The pure bending loss is obtained from the

imaginary part of it. The eigenvalue equation can be solved

numerically without much trouble by using an electronic

computer, if necessary.

On the other hand, several accurate approximate meth-

ods have been presented up to date [1 ]–[4], and they are

much easier than the above rigorous procedure in the

analysis of pure bending loss. In this paper, Marcuse’s

approximation will be used. The pure bending loss per unit

length 2a is expressed in the literature [2] as follows:

2&c2exp [28d– U]
z~= (1)

[rr-n~ k’) @( 2d++++
)

The propagation constant j3 must be the solution of an

eigenvalue equation
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Fig. 2. Pure bending loss of the TEO mode versus asymmetry index of

the waveguide structure with normalized curvature radius as a parame-
ter, where n} =1.01 and n~>l=nq. (a) V=n/4. (b) V=7r/2.
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In the preceding equations, 2d is the slab thickness and R 10-’
is the curvature radius of waveguide center; n 1, n‘, and n q

k

—6
n3

are the refractive indexes in the region r< R – d, R – d< r<

R+ d, and R+ d<r, respectively; and k is the wavenumber
-sjlo

in free space. These equations are valid for TE modes, so

that the following discussions will be restricted to those of
R=fto

10-’ 50

the TE mode. 70

Let us study the dependence of pure bending loss upon
100

the asymmetry in the waveguide structure. The numerical
1O-so .5 1

results for the lowest order mode with the aid of (1) are
(b) a

shown in Figs. 2 and 3, where the contribution of asymme-

try in the refractive-index distribution is illustrated. In
Fig. 3. Pure bending loss of the TEO mode versus asymmetry index of

the waveguide structure with normalized curvature radius as a parame-
both figures, the ordinate is the normalized pure bending ter, where n,= 1.01 and nz= 1~n~. (a) V=n/4. (b) V=7/2.
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loss per unit radian

(7)

and the abscissa is the asymmetry index

n~—n$
a=— (8)

n~—n~

where

nf=fix(n2, nq) (9)

means that n~ is equal to eit~er n z or n ~ which is fixed in

each case. The parameters R and V are the normalized

radius of curvature

(lo)

and the normalized frequency

V=kd(n~–n~)”2 (11)

respectively. In Fig. 2, it is assumed that refractive indexes

n,= 1.01, nf = nq = 1, and n2 increases from unity so that

the asymmetry index changes from zero to unity, whereas

in Fig. 3, n,= 1.01, nf = n ~= 1, and n~ decreases from unity

so that a changes from zero to unity. Therefore, the wave-

guide is assumed to be weakly guiding. The other parame-

ters have been chosen so that ~= 40,50,70,100 in every

figure, V=7/4 in (a), and V=fi/2 in (b).

It is explicitly illustrated in Figs. 2 and 3 that the pure

bending loss decreases monotonically with the increase of

asymmetry index. The change of n ~ contributes much more

efficiently than that of n z. This is the property inherent in

the pure bending loss.

III. TRANSITION Loss

When two waveguides of different curvature radius

and/or structure are connected to each other, the propa-

gating mode supported by one waveguide transforms to

every possible mode of the other waveguide at the junction.

The radiation loss due to the mode conversion is looked on

as the transition loss. In the present case of the single-mode

operation, the transition loss can be estimated in terms of

the power transmitted through the junction, because the

reflected power from it must be negligibly small under the

weakly guiding condition. The transmission coefficient of

the power through the junction can be easily obtained from

the following overlap integral:

~= {p,(t.+E2(zf)dt4}2
JE,(z4)2dz4./E2(tf)2du

(12)

where El(u) and E2( u) are the wave functions for the

lowest order mode of two connected waveguides.

With the aid of (12), let us estimate the transmission

coefficient in the case shown in Fig. 4 where a symmetric

straight slab waveguide is connected to an asymmetric

Fig. 4. Junction between symmetric straight slab waveguide and asym-

metric curved slab waveguide, where n, > n * = n ~ in the straight sec-

tion, and n, > n ~ ~ ns in the curved section.

curved one. A perturbation solution

F(u)
E(U)= EO(U)+Y (13)

where

u=r —R (14)

/

cos(Kd++)exp [–8(t4-d)], u>d

Eo(u)= COS(KU+~), Iul<d

F(u)=

[cos(Kd-+)exPIY( u+~)]> U<-d

(15)

{
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“(3-H].sin(Ku++)– ;cos(Ku++)),

lul<d

-(l++$g)
+(Kd)2 U (Kd)2.—

ydtid d yd ;)2}exP[Y@+412

U<—d

(16)

*=+tan-l K(8-y)
K2 +yii

(17)

is used for the wave function of curved slab waveguide [8].

Figs. 5 and 6 show the variation of transmission coefficient

with the asymmetry index. In Fig. 5, it is assumed that

nl =1.01, n2=n3 =1 for the straight section, and nl =1.01,
n z >1, n ~ = 1 for the curved section, whereas in Fig. 6, the

straight section is the same as that in Fig. 5 and n, = 1.01,

n z = 1, n ~<1 for the curved section. The other parameters

have been chosen so that ~= 40, 50, 70, 100 in every figure,

V= 7r/4 in (a), and V= n/2 in (b). The transmission coeffi-

cients obtained from (12) are in good agreement with those
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Fig. 5. Transmission coefficient of the TEO mode at the junction versus

asymmetry index of the waveguide structure @ curved section with
normalized curvature radius as a parameter, where n, = 1.01 and n ~ =

n~=l in the straight section, and nl=l.O1 and nz>l=ng in he
curved section. (a) V= a/4. (b) V= 7r/2.
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Fig. 6. Transmission coefficient of the TEO mode at the junction versus
asymmetry index of the waveguide structure in curved section with
normalized curvature radius as a parameter, where n, = 1.01 and n * =

n3=l in the straight section, and n,=l.01 and n~=l>nq in the
curved section. (a) V= 17/4. (b) V= rr/2.

of Taylor’s analysis [5] for the case that n, = 1.01, n* = n ~

= 1 in both straight and curved sections and ~> 30.

From these figures, it is found that each curve certainly

takes the maximum value at a certain asymmetry index for

Fig. 7. Curved slab waveguide of turning angle 0 connected to straight

slab waveguides at both ends, where n,> n ~ = n ~ in the straight sections
and n, > n ~ > n ~ in the curved section.

any curvature radius. The field distribution of curved sec-

tion shifts from that of straight section to the far side of

curvature center with decreasing curvature radius. On the

other hand, the field of dielectric waveguide has a tendency

to concentrate on the higher side of the refractive index

when the waveguide structure is asymmetric. At the maxi-

mum point of the transmission coefficient, it is considered

that the contribution of both of the above effects must just

offset each other. The smaller the curvature radius be-

comes, the larger asymmetry is required.

IV. TOTAL TRANSMISSION Loss

In the present section, the total transmission loss is

estimated in the case that asymmetric curved slab wave-

guide of a certain curvature radius and arc length is

connected to a symmetric straight slab waveguide at both

ends as shown in Fig. 7. When each straight section

consists of the same waveguide, the transmission coeffi-

cient at, the entrance to the curved section is identical to

that at the exit. Under the assumption that the total

transmission loss can be obtained from the sum of pure

bending loss and transition loss, the total transmission

coefficient TtOtd of the power passing through the whole

curved section is expressed as

,Otd ==T. exp [–2aRr3]. TT (18)

where 0 is the turning angle of curved section. In the

following numerical examples, 6 has been chosen as 90° in

every case excepting Fig. 10,

Figs. 8 and 9 show the change of total transmission

coefficient with the asymmetry index. In Fig, 8, it is

assumed that n, = 1.01, n ~ = n ~ = 1 for both straight sec-

tions and n, = 1.01, n ~ >1, n ~ = 1 for the curved section,

whereas in Fig, 9, the straight sections are the same as

those in Fig. 8 and n, =1.01, rs2=l, n~<l for the curved

section. The other parameters have been chosen so that

~= 40, 50, 70, 100 in every figure, V= z-/4 in (a), and

V= W/2 in (b).

It is illustrated in these figures that there exists the

optimum asymmetry index which makes the total transmis-

sion coefficient maximum for any curvature radius as well

as in Figs. 5 and 6. However, the asymmetry index of the

maximum point is somewhat larger than that of the corre-

sponding example for the transition loss. The displacement

becomes larger with a decreasing curvature radius, because

the contribution of pure bending loss becomes more domi-

nant. It is one of the most practically important results

obtained here that a great improvement in the total trans-

mission coefficient can be achieved by introducing an
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Fig. 8. Total transmission coefficient of the TEO mode versus asymme-
Fig. 10. Total transmission coefficients of the TEO mode versus asym-

try index of the waveguide structure m curved section with normalized
metry index of the waveguide structure in curved section with turning
angle in curved section~s a parameter, where n, = 1.01, and n ~ = n ~ = I

curvature radius as a parameter, where n I = 1.01, and n z = n 3= I in the
straight section and n, = 1.01, nz z 1=n3, and 0= 90° in the curved

in the straght section, R =40, and V=7r/4. (a) n, = 1.01 and n ~~ I ‘ns
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Fig. 9, Total transmission coefficient of the TEO mode versus asymme-

try index of the waveguide structure in curved section with normalized
curvature radius as a parameter, where n, = 1.01 and n* = n ~ = 1 in the
straight section and n, = 1.01, n ~ = 1=n~, and O= 90° in the curved
section. (a) V= 7r/4. (b) V= 37/2.

adequate asymmetric structure into the curved section even

though the asymmetry index is not just the optimum value.

In the comparison’between the results of Figs. 8 and 9, it

is apparent that the control of n ~ is more effective than

that of n ~. For a typical example, in the case of ~= 40 in

Fig. 8(a), the transmission coefficient is about 0.73 at the

maximum position. On the other hand, in Fig. 9(a) it is

about 0.95 at the maximum position and is above 0.9 in

such a wide range of asymmetry index as 0.4< a <1. In the

practical application, however, there may be the case in

which it is very difficult to decrease the refractive index n ~

or something equivalent in the corresponding region. In

such a case, a larger curvature radius is needed to ensure

the required total transmission coefficient.

Finally, the change of the total transmission coefficient

with the asymmetry index is illustrated in Fig. 10 with the

turning angle of the curved section as a parameter. It is

assumed that @= 60°, 90°, 120°, V= 7r/4, ~= 40 in both

cases, nl=l.O1, nz>l, n~=l in(a), and nl=l.O1, nz==l,

n ~<1 in (b). It is an important feature that the optimum

asymmetry index scarcely changes for three arc lengths of

the curved section in both cases shown in the figure.

Much more complicated structures exist in the actual

waveguide with a three-dimensional guiding property for

optical integrated circuits such as rib waveguides, optical

strip waveguides, etc. However, asymmetric structures can

be easily introduced into these waveguides by means of

decreasing the film thickness of either side of the core in

the case of rib waveguides and loading another material on

either side of the loaded strip in the case of optical strip

waveguides. These waveguides can be transformed into the

equivalent slab waveguides by the concept of effective

index in good approximation, so that the asymmetry of

waveguide structure is included in the asymmetry of refrac-

tive index distribution in the equivalent slab waveguides.
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Therefore, the results on slab waveguides obtained here can

be directly applied to the actual waveguides for optical

integrated circuits.

V. CONCLUSIONS

The asymetric structure is introduced into the curved

section to minimize the total transmission loss involving

both the contribution of pure bending loss and transition

loss in a dielectric slab waveguide. The analysis is based on

the assumption that the total transmission loss is obtained

from the sum of the pure bending loss’ and the transition

loss.

As a result, it is shown that there exists an optimum

asymmetric structure of waveguide for the curved section

which makes the total transmission loss minimum when

both the curvature radius and the arc length are fixed, and

that the improvement of loss characteristics becomes pro-

nounced more and more with a decreasing curvature radius.

And it is also shown that the characteristics of the total

transmission loss do not critically depend upon the asym-

metry index of the waveguide structure, so that some

deviation of the asymmetry index from its optimum value

will not increase the loss in’ an appreciable amount. The

results on slab waveguides obtained here would be still

applicable to the actual waveguides for optical integrated

circuits such as rib waveguides or optical strip waveguides

without major modification.
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